Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Further Pure Mathematics F3 (WFM03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log number P72403A
Publications Code WFM03_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)
A few of the A and B marks may be f.t. - follow through - marks.

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Way 2			
(b)	$\begin{gathered} \cosh (x+\ln 2)=\cosh x \cosh (\ln 2)+\sinh x \sinh (\ln 2) \\ =\left(\frac{2+\frac{1}{2}}{2}\right) \cosh x+\left(\frac{2-\frac{1}{2}}{2}\right) \sinh x \end{gathered}$ Applies the result from part (a) and evaluates both $\cosh (\ln 2)$ and $\sinh (\ln 2)$ Use of (a) must be seen		M1
	$\Rightarrow 5 \cosh x=17 \sinh x$ dM 1 : Collects terms and reaches an equation of form $A \cosh x=B \sinh x$ A1: Correct equation		dM1A1
	$5\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)=17\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)$		
	$12 \mathrm{e}^{x}=22 \mathrm{e}^{-x} \Rightarrow \mathrm{e}^{2 x}=\frac{22}{6} \Rightarrow x=\ldots$	Changes to exponentials (correct forms) And solves for x	ddM1
	$x=\frac{1}{2} \ln \left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
Way 3			
$\cosh (x+\ln 2)=\cosh x \cosh (\ln 2)+\sinh x \sinh (\ln 2)$$\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}+\mathrm{e}^{-\ln 2}}{2}\right)+\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}-\mathrm{e}^{-\ln 2}}{2}\right)=5\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)$Applies the result from part (a) and uses the exponential forms of the hyperbolicfunctions.Use of (a) must be seen			M1
	eg $5 \mathrm{e}^{x}+5 \mathrm{e}^{-x}=17 \mathrm{e}^{x}-17 \mathrm{e}^{-x}$ oe	Evaluates $\mathrm{e}^{\ln 2}$ and $\mathrm{e}^{-\ln 2}$ and starts to collect terms	dM1
	$12 \mathrm{e}^{2 x}=22 \Rightarrow \mathrm{e}^{2 x}=\frac{11}{6}$	Correct value for $\mathrm{e}^{2 x}$	A1
	$x=\ldots$	Solves for x	ddM1
	$x=\frac{1}{2} \ln \left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1

NB: Squaring and obtaining a value for $\sinh \boldsymbol{x}$ or $\cosh \boldsymbol{x}$ introduces extra answers. If these extra answers are then eliminated M1A1 is available but if no attempt at elimination is made award M0A0

ALT \quad For B1 and final dM1A1 of (ii)

 dM1: Reverse the substitution A1: Correct reversed result A1: enter as B1 on e-PEN Correct final answer| Question
 Number | Scheme Notes | Marks |
| :---: | :---: | :---: |
| 3(a) | $3 \quad$ Correct value seen in (a) | B1 |
| | | (1) |
| (b) | $\left(\begin{array}{rrr} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 8 x \\ 8 y \\ 8 z \end{array}\right) \begin{gathered} -2 x+5 y=8 x \\ 5 x+y-3 z=8 y \\ -3 y+6 z=8 z \end{gathered} \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots$
 Correct method for the eigenvector (making a variable equal to 0 is not a correct method) | M1 |
| | $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}1 \\ 2 \\ -3\end{array}\right) \quad$ Any correct eigenvector | A1 |
| | | (2) |
| (c) | $\begin{gathered} \quad\|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} -2-\lambda & 5 & 0 \\ 5 & 1-\lambda & -3 \\ 0 & -3 & 6-\lambda \end{array}\right\|=0 \\ \Rightarrow(-2-\lambda)[(1-\lambda)(6-\lambda)-9]-5[5(6-\lambda)]=0 \Rightarrow \lambda=\ldots \end{gathered}$
 NB CE is $\lambda^{3}-5 \lambda^{2}-42 \lambda+144=0$ but may only find the constant term | M1 |
| | $\lambda=-6 \quad$Correct third eigenvalue
 The work for these 2 marks may be
 seen in (a) - award them
 Correct third eigenvalue by a
 different method - send to review | A1 |
| | $\mathbf{D}=\left(\begin{array}{rrr}3 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -6\end{array}\right) \quad \begin{aligned} & \text { Correct } \mathbf{D} \text { following through their } \\ & \text { third eigenvalue }\end{aligned}$ | A1ft |
| | $\begin{gathered} \left(\begin{array}{rrr} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} -6 x \\ -6 y \\ -6 z \end{array}\right) \Rightarrow \begin{array}{c} -2 x+5 y=-6 x \\ 5 x+y-3 z=-6 y \\ -3 y+6 z=-6 z \end{array} \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\left(\begin{array}{r} -5 \\ 4 \\ 1 \end{array}\right)\right) \\ \text { Correct strategy for } 3^{\text {rd }} \text { eigenvector } \end{gathered}$ | M1 |
| | $\mathbf{P}=\left(\begin{array}{lcc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & -\frac{5}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} & \frac{1}{\sqrt{42}}\end{array}\right) \quad \begin{aligned} & \text { Fully correct matrix consistent with } \\ & \text { their } \mathbf{D} \\ & \text { May have } \frac{\sqrt{3}}{3} \text { etc } \\ & \end{aligned}$ | A1 |
| | | (5) |
| | | Total 8 |
| | | |

Question Number	Scheme Notes	Marks
4.	$y=\operatorname{artanh}\left(\frac{\cos x+a}{\cos x-a}\right)$	
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \frac{(\cos x-a) \times-\sin x-(\cos x+a) \times-\sin x}{(\cos x-a)^{2}} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times\left(-\sin x \times(\cos x-a)^{-1}+(\cos x+a) \times \sin x(\cos x-a)^{-2}\right) \\ & \text { This requires } \frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \text { An attempt at the quotient (or product) rule. } \end{aligned}$ A1: Correct derivative in any form	M1A1
	$=\frac{(\cos x-a)^{2}}{(\cos x-a)^{2}-(\cos x+a)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}=\frac{2 a \sin x}{-4 a \cos x}=\ldots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.	dM1
	$=-\frac{1}{2} \tan x$ cso	A1 (4)
Way 2	$y=\operatorname{artanh}\left(\frac{\cos x+a}{\cos x-a}\right) \Rightarrow \tanh y=\frac{\cos x+a}{\cos x-a} \Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a \sin x}{(\cos x-a)^{2}}$ Takes tanh of both sides, obtains $\operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=$ an attempt at the quotient or product rule	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}$ Correct derivative in any form	A1
	$=\frac{(\cos x-a)^{2}}{(\cos x-a)^{2}-(\cos x+a)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}=\frac{2 a \sin x}{-4 a \cos x}=\ldots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.	dM1
	$=-\frac{1}{2} \tan x \quad$ cso	A1 (4)

Way 3
Uses substitution $u=\frac{\cos x+a}{\cos x-a}$, obtains $\frac{\mathrm{d} u}{\mathrm{~d} x}\left(=\frac{2 a \sin x}{(\cos x-a)^{2}}\right)$ by quotient rule and $\frac{\mathrm{d} y}{\mathrm{~d} u}\left(=\frac{1}{1-u^{2}}\right)$ followed by chain rule to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}$

Correct derivative in any form	A1
Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.	dM 1
$=-\frac{1}{2} \tan x$	cso

Total 4

Way 4	$\begin{gathered} y=\frac{1}{2} \ln \left(\frac{1+\frac{\cos x+a}{\cos x-a}}{1-\frac{\cos x+a}{\cos x-a}}\right)=\frac{1}{2} \ln \left(-\frac{\cos x}{a}\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times\left(\frac{\sin x}{a}\right) \end{gathered}$	M1: Converts to correct chain rule to dif A1: Correct derivativ	M1A1
	Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.		dM1
	$=-\frac{1}{2} \tan x$	cso	A1

Question Number	Scheme Notes	Marks
6(a)	$\mathbf{A}=\left(\begin{array}{rrr}x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1\end{array}\right)$	
	NB: Work for (a) can only be awarded in (a)	
	$\|\mathbf{A}\|=x(-4+2 x)-(-2+4 x)+3(-4+16) \|$Correct determinant attempt (expand by any row or column) or use the Rule of Sarrus (send to review if unsure) Sign errors allowed only within the brackets	M1
	$=2 x^{2}-8 x+38 \quad$ Correct simplified determinant	A1
	$2 x^{2}-8 x+38=2(x-2)^{2}+30$ or\quadStarts the process of showing det $\mathbf{A} \neq 0$ $\frac{\mathrm{~d}}{\mathrm{~d} x}\left(2 x^{2}-8 x+38\right)=4 x-8=0 \Rightarrow x=2$ $\Rightarrow 2 x^{2}-8 x+38=\ldots$ or E.g. Completes the square, finds the minimum point or finds discriminant May find discriminant of $x^{2}-4 a c=64-4 \times 2 \times 38=\ldots$.$\quad$ $x^{2}-4 x+19=\ldots$	M1
	$2 x^{2}-8 x+38 \geqslant 30$ or $b^{2}-4 a c<0$$\quad$Appropriate reasoning for their chosen method and a conclusion stating that A is non-singular. All 3 previous marks needed (No need to evaluate a discriminant, so Therefore det $\mathbf{A} \neq 0$ which means \mathbf{A} is non- singular\quadISW slips in calculation provided $64-4 \times 2 \times 38=\ldots$ or $16-4 \times 19=\ldots$ seen	A1cso
		(4)
(b)	$\left(\begin{array}{rrr} x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1 \end{array}\right) \rightarrow\left(\begin{array}{ccc} -4+2 x & -2+4 x & -4+16 \\ -1+6 & -x+12 & -2 x+4 \\ x-12 & x^{2}-6 & 4 x-2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} -4+2 x & 2-4 x & 12 \\ -5 & -x+12 & 2 x-4 \\ x-12 & -x^{2}+6 & 4 x-2 \end{array}\right)$ M1: Applies the correct method to reach at least a matrix of cofactors 2 correct rows or 2 correct columns needed A1: Correct cofactor matrix	M1A1
	$\begin{gathered} \left(\begin{array}{ccc} -4+2 x & 2-4 x & 12 \\ -5 & -x+12 & 2 x-4 \\ x-12 & -x^{2}+6 & 4 x-2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} -4+2 x & -5 & x-12 \\ 2-4 x & -x+12 & -x^{2}+6 \\ 12 & 2 x-4 & 4 x-2 \end{array}\right) \\ \mathbf{A}^{-1}=\frac{1}{2 x^{2}-8 x+38}\left(\begin{array}{ccc} -4+2 x & -5 & x-12 \\ 2-4 x & -x+12 & -x^{2}+6 \\ 12 & 2 x-4 & 4 x-2 \end{array}\right) \end{gathered}$	dM1A1

	If their original determinant has been divided by 2 (acceptable for (a)) and then used here it is not their determinant and so scores dM0 2 correct rows or 2 correct columns needed from their previous matrix Depends on previous method mark. A1: Correct matrix	

Question Number	Scheme	Notes	Marks
7.	$I_{n}=\int \frac{x^{n}}{\sqrt{10-x^{2}}} \mathrm{~d}$	$n \in \mathbb{N},\|x\|<\sqrt{10}$	
(a)	$I_{n}=\int \frac{x^{n}}{\sqrt{10-x^{2}}} \mathrm{~d} x=\int \frac{x^{n-1} \times x}{\sqrt{10-x^{2}}} \mathrm{~d} x$	Writes x^{n} as $x \times x^{n-1}$	M1
	$\int \frac{x^{n-1} \times x}{\sqrt{10-x^{2}}} \mathrm{~d} x=-x^{n-1}\left(10-x^{2}\right)^{\frac{1}{2}}+(n-1) \int x^{n-2}\left(10-x^{2}\right)^{\frac{1}{2}} \mathrm{~d} x$ dM1: Uses integration by parts to obtain $\int \frac{x^{n-1} \times x}{\sqrt{10-x^{2}}} \mathrm{~d} x=\alpha x^{n-1}\left(10-x^{2}\right)^{\frac{1}{2}}+\beta \int x^{n-2}\left(10-x^{2}\right)^{\frac{1}{2}} \mathrm{~d} x$ A1: Correct expression		dM1A1
	$\begin{gathered} =\ldots+(n-1) \int x^{n-2}\left(10-x^{2}\right)\left(10-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x \\ =\ldots+10(n-1) \int x^{n-2}\left(10-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x-(n-1) \int x^{n}\left(10-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x \\ \text { Applies }\left(10-x^{2}\right)^{\frac{1}{2}}=\left(10-x^{2}\right)\left(10-x^{2}\right)^{-\frac{1}{2}} \text { and splits into } 2 \text { integrals } \end{gathered}$		dM1
	$=\ldots+10(n-1) I_{n-2}-(n-1) I_{n} \Rightarrow n I_{n}$	Introduces I_{n-2} and I_{n} and makes progress to the given result	dM1
	$n I_{n}=10(n-1) I_{n-2}-x^{n-1}\left(10-x^{2}\right)^{\frac{1}{2}} *$ Fully correct proof with no errors (recovery of missing brackets counts as an error) as does missing $\mathrm{d} x$		A1*
			(6)
(b)	$I_{1}=\int_{0}^{1} \frac{x}{\sqrt{10-x^{2}}} \mathrm{~d} x=\left[-\left(10-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{1}(=-3+\sqrt{10})$ Correct method for I_{1} Limits can be substituted later		M1
	$5 I_{5}=10 \times 4 I_{3}+\ldots$	Applies the reduction formula at least once Allow with 3 or $\left[-x^{4}\left(10-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{1}$	M1
	$\begin{gathered} I_{5}=8 I_{3}-\frac{3}{5}=8\left(\frac{20}{3} I_{1}-1\right)-\frac{3}{5}=\frac{160}{3} I_{1}-\frac{43}{5} \\ I_{5}=\frac{160}{3}(\sqrt{10}-3)-\frac{43}{5} \end{gathered}$ Completes the process using their I_{1} to obtain a numerical value for I_{5} Limits must now be substituted		M1
	$=\frac{1}{15}(800 \sqrt{10}-2529)$	Cao	A1
			(4)
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	$(\mathbf{r}=)\left(\begin{array}{r}-4 \\ -5 \\ 3\end{array}\right)+t\left(\begin{array}{r}3 \\ 4 \\ -1\end{array}\right)$	Forms the parametric form of the line	M1
	$\begin{gathered} 3(3 t-4)+4(4 t-5)-(3-t)=17 \\ \Rightarrow t=(2) \end{gathered}$	Substitutes the parametric form for the line into the plane equation and solves for " t ". Depends on the first mark.	dM1
	$\left(\begin{array}{r}-4 \\ -5 \\ 3\end{array}\right)+" 2{ }^{\prime}\left(\begin{array}{r}3 \\ 4 \\ -1\end{array}\right)$	Uses their value of t correctly to find Q. Depends on the previous mark.	dM1
	$(2,3,1)$	Correct coordinates Accept if written as a column vector but not with $\mathbf{i}, \mathbf{j}, \mathbf{k}$	A1 (4)
Way 2	$\begin{gathered} \frac{x+4}{3}=\frac{y+5}{4}=\frac{z-3}{-1} \\ \text { eg } x=\mathrm{f}(y) \quad z=\mathrm{g}(y) \end{gathered}$	Forms the Cartesian equation of the line, rearranges twice to get 2 of x, y, z as functions of the third	M1
		Substitutes these into the plane equation and solves for one coordinate	dM1
		Obtains the other 2 coordinates	dM1
	$(2,3,1)$	Correct coordinates Accept if written as a column vector but not with $\mathbf{i}, \mathbf{j}, \mathbf{k}$	A1
			(4)
(b)	$\mathbf{P Q}=\left(\begin{array}{l}2+4 \\ 3+5 \\ 1-3\end{array}\right), \mathbf{P R}=\left(\begin{array}{r}-1+4 \\ 6+5 \\ 4-3\end{array}\right), \mathbf{R Q}=\left(\begin{array}{l}2+1 \\ 3-6 \\ 1-4\end{array}\right)$	Attempts 2 vectors in plane $P Q R$ (Must use the given coordinates of P, R and their coordinates of Q	M1
	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 8 & -2 \\ 3 & 11 & 1\end{array}\right\|=\left(\begin{array}{r}30 \\ -12 \\ 42\end{array}\right)$	Attempt vector product between 2 vectors in $P Q R$. Depends on the first mark.	dM1
	$\left(\begin{array}{r}5 \\ -2 \\ 7\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=11$	Uses any of P, Q or R to find constant. Depends on the previous mark.	dM1
	$5 x-2 y+7 z=11$	Any correct Cartesian equation	A1
			(4)

Way 2	$\begin{aligned} -4 a-5 b-3 c & =1 \\ 2 a+3 b+c & =1 \\ -a+6 b+4 c & =1 \end{aligned}$	Uses the Cartesian form of the equation of a plane, $a x+b y+c z=1$, and substitutes the coordinates of each of the 3 points	M1
	Solves to get a value for any of a, b or c		dM1
	Obtains values for the other 2		dM1
	$\frac{5}{11} x-\frac{2}{11} y+\frac{7}{11} z=1$	Any correct Cartesian equation	A1
			(4)

(c)	Reflection of P in Π is $\left(\begin{array}{r} -4 \\ -5 \\ 3 \end{array}\right)+2 \times{ }^{2} 2\left(\begin{array}{r} 3 \\ 4 \\ -1 \end{array}\right)\left(=\left(\begin{array}{r} 8 \\ 11 \\ -1 \end{array}\right)\right)$	Correct strategy for another point on l_{3}	M1
	$\left(\begin{array}{r}8 \\ 11 \\ -1\end{array}\right)-\left(\begin{array}{r}-1 \\ 6 \\ 4\end{array}\right)\left(=\left(\begin{array}{r}9 \\ 5 \\ -5\end{array}\right)\right)$	Attempts direction of l_{3}. Depends on the first mark.	dM1
	$\mathbf{r}=\binom{-1}{6}+\lambda\binom{9}{5}$	Forms the equation of l_{3} using R (or their reflected P) and their direction. Depends on the previous mark.	ddM1
	(4) (-5)	Any correct equation in vector form	A1 (4)
			Total 12

Question Number	Scheme	Notes	Marks
9	$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1, \quad y=k x-3$		
(a)	$\begin{gathered} \frac{x^{2}}{9}+\frac{(k x-3)^{2}}{4}=1\left(\text { or } \frac{x^{2}}{9}+\frac{k^{2} x^{2}-6 k x+9}{4}=1\right) \Rightarrow 4 x^{2}+9\left(k^{2} x^{2}-6 k x+9\right)=36 \\ \text { Substitutes to obtain a quadratic in } x \text { and eliminates fractions } \end{gathered}$		M1
	$\left(9 k^{2}+4\right) x^{2}-54 k x+45=0 *$	Correct proof with no errors	A1*
			(2)
(b)	$x=\frac{1}{2}\left(\frac{54 k}{9 k^{2}+4}\right)=\frac{27 k}{9 k^{2}+4}$ Uses $1 / 2$ sum of roots for the x coordinate OR Solve the equation (by formula), add the 2 roots and halve the result. OR $x=\frac{54 k \pm \sqrt{\text { discriminant }}}{2\left(9 k^{2}+4\right)} \quad$Must reach x_{m}. Allow errors in the discriminant		M1
	$\begin{gathered} y=k\left(\frac{27 k}{9 k^{2}+4}\right)-3 \\ y=\frac{27 k^{2}-27 k^{2}-12}{9 k^{2}+4}=-\frac{12}{9 k^{2}+4} \end{gathered}$	Uses the straight line equation to find y as a single fraction, can be unsimplified Depends on first M mark of (b)	dM1
	$x=\frac{27 k}{9 k^{2}+4}, \quad y=-\frac{12}{9 k^{2}+4}$	Fully correct work	A1
			(3)
(c)	$x^{2}=\frac{729 k^{2}}{\left(9 k^{2}+4\right)^{2}} \Rightarrow x^{2}+p y^{2}=\frac{729 k^{2}+144 p}{\left(9 k^{2}+4\right)^{2}}$ Obtains an expression for $x^{2}+p y^{2}$ using their coordinates obtained in (b) and obtains a common denominator		M1
	$\begin{gathered} \frac{729 k^{2}+144 p}{\left(9 k^{2}+4\right)^{2}}=-\frac{12 q}{\left(9 k^{2}+4\right)} \Rightarrow 729 k^{2}+144 p=-12 q\left(9 k^{2}+4\right) \\ 729 k^{2}+144 p=81\left(9 k^{2}+\frac{16}{9} p\right) \\ \Rightarrow \frac{16}{9} p=4 \Rightarrow p=\ldots \end{gathered}$ Correct strategy to obtain a value for p or for q Depends on the first M mark of (c)		dM1
	$p=\frac{9}{4}$ or $q=-\frac{27}{4}$ oe	Correct value (or for q if found first)	A1
	$-12 q=81 \Rightarrow q=\ldots$	Correct strategy to obtain a value for the second variable Depends on both previous M marks	ddM1
	$\begin{aligned} \Rightarrow x^{2}+\frac{9}{4} y^{2} & =-\frac{27}{4} y \\ p & =\frac{9}{4} \text { and } q=-\frac{27}{4} \text { oe } \end{aligned}$	Both values correct - can be embedded in the equation	A1
			(5)

(c) Way 2	$x=\frac{27 k}{9 k^{2}+4}, \quad y=-\frac{12}{9 k^{2}+4} \Rightarrow \frac{x}{y}=-\frac{27 k}{12} \Rightarrow k=-\frac{4 x}{9 y}$ Obtains k in terms of x and y using their coordinates found in (b)		M1
	$k=-\frac{4 x}{9 y} \Rightarrow y=-\frac{12}{9\left(\frac{16 x^{2}}{81 y^{2}}\right)+4} \text { or } x=\frac{27\left(-\frac{4 x}{9 y}\right)}{9\left(\frac{16 x^{2}}{81 y^{2}}\right)+4}$ dM 1 :Substitutes k into y or x to obtain a Cartesian equation A1: Any correct Cartesian equation Depends on the first M mark of (c)		dM1A1
	$\Rightarrow x^{2}+\frac{9}{4} y^{2}=-\frac{27}{4} y$	Rearranges to the form required Depends on both previous M marks of (c)	ddM1
		Correct equation or correct values stated	A1

